TV this course
Our MSc Aerodynamics and Computation degree focuses on numerical methods and the physics and computation modelling of turbulence. It will enhance your knowledge of flow physics and your ability to use state-of-the art computational tools to improve industrial designs. This course is ideal if you’re an engineering, maths or science graduate with a strong background in fluid dynamics or aerodynamics.
This degree will prepare you for a career in industrial research and development, or ongoing postgraduate research.
You’ll take part in individual and group practical work as well as a critical research project, developing your expertise in aerodynamics.
You’ll examine current trends and challenges and engage in discussion and research on critical issues in the field. You'll also develop your ability to use experimental and advanced computational methods, such as particle image velocimetry (the measurement of the velocity of fluids), finite volume method and high-order finite difference methods
Research projects are often linked to our current research activities, or supported by industry or government funding bodies. Past students have undertaken research projects such as:
- the investigation of the installation effects on the noise of Dyson high-spend fans
- aerodynamic load estimation from particle image velocimetry
- morphing wings aircraft modelling
You’ll benefit from state-of-the-art facilities including high-performance computers and the RJ Mitchell Wind Tunnel, the largest university wind tunnel in the UK. Recent graduates have gone on to work at organisations such as Dyson and Rolls-Royce.
We regularly review our courses to ensure and improve quality. This course may be revised as a result of this. Any revision will be balanced against the requirement that the student should receive the educational service expected. Find out why, when, and how we might make changes.
Our courses are regulated in England by the Office for Students (OfS).
Course lead
Your course leader is Dr Zhiwei Hu, Reginald Platt Lecturer in Civil Aviation within Engineering and Physical Sciences. His research interests include turbulence simulations, computational fluid dynamics and high-speed train aerodynamics. Visit Dr Hu's staff profile to read more about his work.
Accreditations
This master's programme is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE) as meeting the academic requirement for Further Learning for Chartered Engineer registration. Candidates must hold a BEng/BSc undergraduate first degree that is accredited for Chartered Engineer (CEng) registration to comply with full CEng registration requirements.
“I think one of the most amazing thing that I discovered at the University were the wind tunnels and the experiments that could be carried out in them. I was able to try lots of them and when you can visually see how flow develops, and vortex appears and diminishes, it is amazing.”
Learn more about these subject areas
Course locations
This course is based at Highfield and Boldrewood.
Awarding body
This qualification is awarded by the TV.
Download the Course Description Document
The Course Description Document details your course overview, your course structure and how your course is taught and assessed.
Entry requirements
You’ll need a 2:1 degree in engineering, maths, physical sciences or a related subject.
You'll also need a 2:1 score in two modules from the following list of topics:
- fluid dynamics
- fluid mechanics
- aerodynamics
- aeronautics
- thermofluids
Find the equivalent international qualifications for your country.
Information for students who have studied in China
This programme only accepts applicants who have studied at an X1, X2, X3 or X4 institution.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 6.0
- writing
- 6.0
- speaking
- 6.0
- listening
- 6.0
We accept other English language tests. Find out which English language tests we accept.
If you don’t meet the English language requirements, you can achieve the level you need by completing a pre-sessional English programme before you start your course.
Pre-masters
If you don’t meet the academic requirements, you can complete a pre-master's programme through our partnership with OnCampus. .
Recognition of professional experience
If you don't have the exact entry requirements, but you have significant work experience in this sector we’ll assess your relevant professional experience, your subject knowledge and your aptitude for learning.
Your application will be considered on individual merit and you may be asked to attend an interview.
Got a question?
Please contact us if you're not sure you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Course structure
This full-time master's course lasts for 12 months.
For the first 8 months (semesters 1 and 2) you’ll focus on the taught part of the course. You'll sit exams at the end of each semester.
You'll spend the last 4 months of your course working full-time on your research project. You’ll be able to do some preparation for this in semester 2.
Want more detail? See all the modules in the course.
Modules
The modules outlined provide examples of what you can expect to learn on this degree course based on recent academic teaching. As a research-led University, we undertake a continuous review of our course to ensure quality enhancement and to manage our resources. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Find out why, when and how we might make changes.
For entry in academic year 2025 to 2026
Year 1 modules
You must study the following modules :
Aerothermodynamics
Aerothemodynamics is essential to the design of high speed flight vehicles (in this context high speed refers to anything above about Mach 0.3). The subject integrates thermodynamics and fluid mechanics concepts to cover the fundamentals of compressible f...
Applications of CFD
The basic concept of Computational Fluid Dynamics and numerical procedures (FVM/FDM) are introduced. The major focus is practical applications, including geometry and grid generation, using solvers and turbulence models in CFD packages, and interpretation...
Computational Aerodynamics
This module is concerned with the physical modelling and numerical methods required for calculations of aerodynamic forces and moments on moving objects. It is not exclusively a package-based computational fluid dynamics module. Instead, it focuses on mat...
MSc Research Project
Within the context of your programme of study, students will undertake independent, original and critical research on a relevant topic. Students will then communicate the research objectives, methodology, analysis, results and conclusions effectively both...
Turbulence
This module will provide an introduction to the fundamentals of turbulent flow . The focus will be on understanding the equations of motion and the underlying physics they contain. The goal will be to provide you with the tools necessary to continue the s...
You must also choose from the following modules :
Advanced Aeronautics
Advanced Aeronautics further develops student’s knowledge in aerodynamics as applied to fixed wing aircraft and rotorcraft beyond the level achieved in Part II Aerodynamics, focusing on the application of basic fluid dynamics principles to flow over exter...
Advanced Computational Methods I
The module is focussed around advanced computational methods incorporating C and compiled languages, computational modelling and software engineering techniques for science and engineering. It builds on lower level courses such as FEEG1001 and FEEG2001 an...
Aeroacoustics
This module covers aerodynamic noise sources and sound propagation in moving media. Aeroacoustics is of great importance in engineering settings involving high speed flows, including transport (aeroplane, aeroengine, automobile, train), industrial proces...
Data-Driven Fluid Mechanics
The module will introduce contemporary computational methods for fluid flow analysis, with a specific focus on techniques that use simulation or experimental data. The module will cover aspects of flow stability, model order reduction and pattern identifi...
Design Search and Optimisation (DSO) - Principles, Methods, Parameterizations and Case Studies
This module introduces students to formal design search and optimization (DSO) approaches using a mixture of lectures covering theory and practice and a series of worked case studies with student participation.
Experimental Methods for Aerodynamics
This module is aimed at students who will be performing aerodynamic or fluid mechanic experiments in their individual project, group design project and/or research project. You will gain insights on the problems associated with design, setup and execut...
Hypersonic & High Temperature Gas Dynamics
The module will provide the necessary background for those students interested in the design and operation of high speed aerospace vehicles, such as launch vehicles, re-entry vehicles and missiles.
Introduction to Machine Learning
Machine Learning advances are revolutionising our world. At a fundamental level, Machine Learning deals with the extraction of useful information from large and complex datasets. There are now many applications, from the automatic understanding and proces...
Numerical Methods
Often in mathematics, it is possible to prove the existence of a solution to a given problem, but it is not possible to "find it". For example, there are general theorems to prove the existence and uniqueness of an initial value problem for an ordinary di...
Race Car Aerodynamics
The student will gain insight on major aerodynamic features associated with vehicle and race car aerodynamics, including aerodynamics of overall car, aerodynamics of major devices, test facilities and experimental methods, test setup, etc. The most import...
Learning and assessment
Learning
You’ll learn by a variety of teaching and learning methods. These include:
- lectures
- tutorials
- practical laboratory work
- individual and group projects
Your learning will be enhanced by our industry-standard facilities, including high-performance computers and the RJ Mitchell wind tunnel, which has been used by F1 teams, America's Cup yacht teams and Olympic athletes.
Assessment
Assessment depends on the modules you take, but assessment methods may include:
- unseen written exams
- problem-solving exercises
- laboratory reports
- design exercises
- essays
- individual and group projects
- presentations
Dissertation
You'll carry out a research project and complete a dissertation, focusing on any of the areas covered by the course. The project is an opportunity for you to demonstrate the skills and knowledge you've acquired over the first 2 semesters.
Academic Support
You’ll be assigned a personal academic tutor at the start of your degree. They’ll provide you with personal support and advice during your time at the University.
One-to-one tutorials will cater for individual learning differences.
Careers and employability
Employability skills
This degree will allow you to develop and evidence subject-specific and targeted employability skills. This includes the required skill set for a range of future careers, further study, or starting your own business.
The skills you can expect to focus on and gain from this course include:
- Research
- Critical thinking
- Self-management
- Confidence
- Communication
- Teamwork
- Creativity
- Problem solving
- Resilience
The employability and enterprise skills you'll gain from this course are reflected in the Southampton skills model. When you join us you'll be able to use our skills model to track, plan, and benefit your career development and progress.
Download skills overview
Career pathways
Graduates commonly work in a range of organisations or sectors including:
Information and Communication,
Education,
Finance and Insurance,
Public Administration and Defence,
Scientific and Technical,
Arts and Entertainment,
Manufacturing,
Transport.
- Aerodynamics engineer
- Aerospace engineer
- Race car designer
- Industrial researcher
- Flight tester
- Materials engineer
- University lecturer
- Spacecraft design engineer
- University lecturer
- Management consultant
- Data analyst
- Nuclear engineer
- Financial analyst
- Sustainability consultant
- Survivability analyst
- Science teacher
- Aerodynamics engineer
- Aerospace engineer
- CFD simulation engineer
- CFD development engineer
- Data scientist
- Fluid dynamics and thermal engineer
- Mechanical design engineer
- Research and development engineer
Job prospects for MSc Aerodynamics and Computation graduates
*Example graduate job titles and job prospect statistics taken from The Graduate Outcomes Survey, which gathers information about the activities and perspectives of graduates 15 months after finishing their course.

Work experience opportunities
Choosing to do work experience is a great way to enhance your employability, build valuable networks, and evidence your potential. Learn about the different work and industry experience options at Southampton.
Careers services and support
We are a top 20 UK university for employability (QS Graduate Employability Rankings 2022). Our Careers, Employability and Student Enterprise team will support you. This support includes:
- work experience schemes
- CV and interview skills and workshops
- networking events
- careers fairs attended by top employers
- a wealth of volunteering opportunities
- study abroad and summer school opportunities
We have a vibrant entrepreneurship culture and our dedicated start-up supporter, , is open to every student.
Your career ideas and graduate job opportunities may change while you're at university. So it is important to take time to regularly reflect on your goals, speak to people in industry and seek advice and up-to-date information from Careers, Employability and Student Enterprise professionals at the University.
Fees, costs and funding
Tuition fees
Fees for a year's study:
- UK students pay £9,250.
- EU and international students pay £31,500.
Deposit
If you're an international student on a full-time course, we'll ask you to pay £2,000 of your tuition fees in advance, as a deposit.
Your offer letter will tell you when this should be paid and provide full terms and conditions.
Find out about exemptions, refunds and how to pay your deposit on our tuition fees for overseas students page.
What your fees pay for
Your tuition fee covers the full cost of tuition and any exams. The fee you pay will remain the same each year from when you start studying this course. This includes if you suspend and return.
Find out how to pay your tuition fees.
Accommodation and living costs, such as travel and food, are not included in your tuition fees. There may also be extra costs for retake and professional exams.
Explore:
10% alumni discount
If you’re a graduate of the TV, you could be eligible for a 10% discount on your postgraduate tuition fees.
Postgraduate Master’s Loans (UK nationals only)
This can help with course fees and living costs while you study a postgraduate master's course. .
Funding your postgraduate studies
A variety of additional funding options may be available to help you pay for your master’s study. Both from the University and other organisations.
Funding for EU and international students
Find out about funding you could get as an international student.
How to apply
- Use the blue 'apply for this course' button on this page to take you to our postgraduate admissions system.
- Create an account which gives you access to your own application portal. .
- Search for the course you want to apply for.
- Complete the application form and upload any supporting documents.
- Pay the £50 application assessment fee, (there are some exemptions, check terms and conditions).
- Submit your application.
For further details of our admission process, read our step by step guide to postgraduate taught applications.
Application deadlines
There are different deadlines for this course:
- International students who require an ATAS: Tuesday 29 July 2025, midday UK time
- International students who do not require an ATAS: Tuesday 26 August 2025, midday UK time
- UK students: Tuesday 9 September 2025, midday UK time
We advise applying early as applications may close before the expected deadline if places are filled.
Application assessment fee
We’ll ask you to pay a £50 application assessment fee if you’re applying for a postgraduate taught course.
This is an extra one-off charge which is separate to your tuition fees and is payable per application. It covers the work and time it takes us to assess your application. You’ll be prompted to pay when you submit your application which won’t progress until you've paid.
If you're a current or former TV student, or if you’re applying for certain scholarships, you will not need to pay the fee. PGCE applications through GOV.UK and Master of Research (MRes) degree applications are also exempt. Find out if you’re exempt on our terms and conditions page.
Academic Technology Approval Scheme (ATAS)
If you're an international student you'll need approval from the UK's Academic Approval Scheme before you can study this course.
The ATAS certificate is required for certain sensitive postgraduate subjects.
Supporting information
When you apply you’ll need to submit a personal statement explaining why you want to take the course.
You’ll need to include information about:
- your knowledge of the subject area
- why you want to study a postgraduate qualification in this course
- how you intend to use your qualification
References are not required for this programme.
Please include the required paperwork showing your first degree and your IELTS English language test score (if you are a non-native English speaker) with your application. Without these, your application may be delayed.
What happens after you apply
You'll be able to track your application through our online Applicant Record System.
We will aim to send you a decision 6 weeks after you have submitted your application.
Unfortunately, due to number of applications we receive, we may not be able to give you specific feedback on your application if you are unsuccessful.
Equality and diversity
We treat and select everyone in line with our Equality and Diversity Statement.
Got a question?
Please contact us if you're not sure you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000